

DARPA Bio Futures

Adding the "Bio Dimension" to DARPA Futures

Stephen L. Squires

What are we doing?

- Reflecting on the past
- Recognizing trends and limits
- **→** Formulating alternative futures
- Developing a strategic vision
- Stimulating strategic processes
- Moving toward advanced futures

Reflecting on the past

- Over 50 years of accelerating advance ...
- The role of science, science, technology, applications.
- The role of DARPA in the national and global system context.

Recognizing trends and limits

- The information technology revolution enabled by microelectronics
- The revolutions in biology with minimal coupling to info and micro
- The increasingly pervasive use of information technology in science, technology, society
- The potential of coupling to biology

Formulating alternative futures

- Recognize the potential of increased coupling among [Bio:Info:Micro]
- Imagine the scientific discovery of fundamental devices at the intersection
- Imagine their transformation to new scalable systems and applications

Why this is important ...

- Defense Challenges
 - Bio Defense
 - Human Interfaces
 - Others?
- DARPA Opportunities
 - Enabling new mission capabilities
 - Stimulating new science and technology
 - Building on DARPA Strengths

Interactions

1999.05.19

Scale

• 10⁻³ milli

• 10⁻⁶ micro

• 10⁻⁹ nano

• 10⁻¹² pico

• 10⁻¹⁵ femto

• 10⁻¹⁸ atto

• ... down into sub atomic

• ... up toward galactic

• 10^{24} O(Avogadro)

• 10²¹

 10^{18} E Exa

10¹⁵ P Peta

 10^{12} T Tera

• 10⁹ G Giga

10⁶ M Mega

 10^3 K Kilo

 10^0 (1)

1999.05.19 Each dimension is Log(scale) with origin at Log(1)

Fundamental Devices

A Generic 21st Century Characterization

- Enables fundamental advance
- Functional unit of replication
- Scalable production system
- Integrable into systems

The details are different for each kind ...

"Solid State" Technologies enable [Micro:Info]

Transistors, Lasers, Displays and "Magnetics"

[Micro:Info]

(For t = 2000)

Transistor in a Can

Integrated Circuit held by tweezers

Microprocessor photomicrograph

Moore's Law

Photonics Curves

"Bio State" Technologies enable [Bio:Info:Micro]

[Bio:Info]

(For t = 2000)

The DNA discovery ...

X-ray crystallography

Description in Nature

3-D Model

DNA-scale Devices

10-8

10-7

Strands of DNA

meter

The structure of DNA

The molecules of DNA

Developing a strategic vision

- Stimulate the formation of interdisciplinary research activities focused on fundamentals of the interactions in [Bio:Info:Micro]
- Enable the transition of scientific discoveries into prototype technologies that can be experimentally applied
- Enable the development of new capabilities in realistic system contexts

Stimulating strategic processes

- Leverage existing Bio research activities
- Couple to Info and Micro research
- Transition to IT-based processes
- Develop new "devices"
- Imagine new capabilities
- Transition imagination toward technology
- Establish fundamentally new capabilities

Enable IT-based ...

Measurement

Analysis

Design

Prototyping

Integration

Collaboration

All accessible over the Net

Preparing for the future

- Visiting advanced research sites
 - Aggressive listening
 - Trends, limits, challenges, opportunities
 - Investment strategies
- Planning [Bio:Info:Micro] meetings
- Planning joint program approaches
- Planning for future pilot projects